Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.180
Filter
1.
J Physiol Anthropol ; 43(1): 13, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725020

ABSTRACT

BACKGROUND: Having higher muscle mass in early adulthood is an important factor in preventing sarcopenia. However, university students undergo lifestyle changes compared to their high school years, which may lead to changes in body composition, such as an increase in body fat and a decrease in muscle mass. The study aimed to investigate the association between body composition and lifestyle behaviors, including chronotype, among Japanese female university students, due to the prevalence of underweight among young females in the country. METHODS: The physical activity level (PAL), daily dietary intake status, morningness-eveningness questionnaire (MEQ) score, and body composition of 230 students were assessed in this cross-sectional study. Body composition was measured using a multifrequency bioelectrical impedance analyzer, and body mass index (BMI), body fat percentage (%BF), and skeletal muscle mass index (SMI) were determined. RESULTS: Individuals who were evening type (ET) had a higher %BF and lower SMI than those who were non-ET, but no differences in body weight or BMI were found. Although ET individuals had lower total energy intake, protein intake, and PALs than non-ETs, the differences were small. However, multiple regression analyses showed that SMI was significantly positively associated with MEQ and PAL, and %BF was significantly negatively associated with MEQ and PAL. CONCLUSION: These results suggest that female university students with lateness of chronotype and low physical activity have a body composition imbalance resulting in higher body fat and lower muscle mass. Therefore, young females may need to take chronotype-specific measures (especially ET individuals) to help them maintain an appropriate body composition.


Subject(s)
Body Composition , Exercise , Students , Humans , Female , Body Composition/physiology , Japan/epidemiology , Students/statistics & numerical data , Exercise/physiology , Young Adult , Cross-Sectional Studies , Universities , Nutritional Status/physiology , Adult , Body Mass Index , Chronotype
2.
BMC Geriatr ; 24(1): 420, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38734596

ABSTRACT

BACKGROUND: Sarcopenia and cognitive impairment have been linked in prior research, and both are linked to an increased risk of mortality in the general population. Muscle mass is a key factor in the diagnosis of sarcopenia. The relationship between low muscle mass and cognitive function in the aged population, and their combined impact on the risk of death in older adults, is currently unknown. This study aimed to explore the correlation between low muscle mass and cognitive function in the older population, and the relationship between the two and mortality in older people. METHODS: Data were from the National Health and Nutrition Examination Survey 1999-2002. A total of 2540 older adults aged 60 and older with body composition measures were included. Specifically, 17-21 years of follow-up were conducted on every participant. Low muscle mass was defined using the Foundation for the National Institute of Health and the Asian Working Group for Sarcopenia definitions: appendicular lean mass (ALM) (< 19.75 kg for males; <15.02 kg for females); or ALM divided by body mass index (BMI) (ALM: BMI, < 0.789 for males; <0.512 for females); or appendicular skeletal muscle mass index (ASMI) (< 7.0 kg/m2 for males; <5.4 kg/m2 for females). Cognitive functioning was assessed by the Digit Symbol Substitution Test (DSST). The follow-up period was calculated from the NHANES interview date to the date of death or censoring (December 31, 2019). RESULTS: We identified 2540 subjects. The mean age was 70.43 years (43.3% male). Age-related declines in DSST scores were observed. People with low muscle mass showed lower DSST scores than people with normal muscle mass across all age groups, especially in the group with low muscle mass characterized by ALM: BMI (60-69 years: p < 0.001; 70-79 years: p < 0.001; 80 + years: p = 0.009). Low muscle mass was significantly associated with lower DSST scores after adjusting for covariates (ALM: 43.56 ± 18.36 vs. 47.56 ± 17.44, p < 0.001; ALM: BMI: 39.88 ± 17.51 vs. 47.70 ± 17.51, p < 0.001; ASMI: 41.07 ± 17.89 vs. 47.42 ± 17.55, p < 0.001). At a mean long-term follow-up of 157.8 months, those with low muscle mass were associated with higher all-cause mortality (ALM: OR 1.460, 95% CI 1.456-1.463; ALM: BMI: OR 1.452, 95% CI 1.448-1.457); ASMI: OR 3.075, 95% CI 3.063-3.088). In the ALM: BMI and ASMI-defined low muscle mass groups, participants with low muscle mass and lower DSST scores were more likely to incur all-cause mortality ( ALM: BMI: OR 0.972, 95% CI 0.972-0.972; ASMI: OR 0.957, 95% CI 0.956-0.957). CONCLUSIONS: Low muscle mass and cognitive function impairment are significantly correlated in the older population. Additionally, low muscle mass and low DSST score, alone or in combination, could be risk factors for mortality in older adults.


Subject(s)
Cognition , Nutrition Surveys , Sarcopenia , Humans , Male , Female , Sarcopenia/epidemiology , Sarcopenia/mortality , Aged , United States/epidemiology , Middle Aged , Cognition/physiology , Aged, 80 and over , Muscle, Skeletal/pathology , Mortality/trends , Cognitive Dysfunction/epidemiology , Body Composition/physiology , Body Mass Index , Follow-Up Studies
3.
PLoS One ; 19(5): e0298709, 2024.
Article in English | MEDLINE | ID: mdl-38743656

ABSTRACT

This is the first study to assess longitudinal changes in anthropometric, physiological, and physical qualities of international women's rugby league players. Thirteen forwards and 11 backs were tested three times over a 10-month period. Assessments included: standing height and body mass, body composition measured by dual x-ray absorptiometry (DXA), a blood panel, resting metabolic rate (RMR) assessed by indirect calorimetry, aerobic capacity (i.e.,[Formula: see text]) evaluated by an incremental treadmill test, and isometric force production measured by a force plate. During the pre-season phase, lean mass increased significantly by ~2% for backs (testing point 1: 47 kg; testing point 2: 48 kg) and forwards (testing point 1: 50 kg; testing point 2: 51 kg) (p = ≤ 0.05). Backs significantly increased their [Formula: see text] by 22% from testing point 1 (40 ml kg-1 min-1) to testing point 3 (49 ml kg-1 min-1) (p = ≤ 0.04). The [Formula: see text] of forwards increased by 10% from testing point 1 (41 ml kg-1 min-1) to testing point 3 (45 ml kg-1 min-1), however this change was not significant (p = ≥ 0.05). Body mass (values represent the range of means across the three testing points) (backs: 68 kg; forwards: 77-78 kg), fat mass percentage (backs: 25-26%; forwards: 30-31%), resting metabolic rate (backs: 7 MJ day-1; forwards: 7 MJ day-1), isometric mid-thigh pull (backs: 2106-2180 N; forwards: 2155-2241 N), isometric bench press (backs: 799-822 N; forwards: 999-1024 N), isometric prone row (backs: 625-628 N; forwards: 667-678 N) and bloods (backs: ferritin 21-29 ug/L, haemoglobin 137-140 g/L, iron 17-21 umol/L, transferrin 3 g/L, transferring saturation 23-28%; forwards: ferritin 31-33 ug/L, haemoglobin 141-145 g/L, iron 20-23 umol/L, transferrin 3 g/L, transferrin saturation 26-31%) did not change (p = ≥ 0.05). This study provides novel longitudinal data which can be used to better prepare women rugby league players for the unique demands of their sport, underpinning female athlete health.


Subject(s)
Basal Metabolism , Body Composition , Football , Humans , Female , Adult , Body Composition/physiology , Football/physiology , Longitudinal Studies , Young Adult , Anthropometry , Athletes , Absorptiometry, Photon , Exercise Test , Body Mass Index , Rugby
4.
BMC Geriatr ; 24(1): 403, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714957

ABSTRACT

BACKGROUND: Evidence on the effects of plantar intrinsic foot muscle exercise in older adults remains limited. This study aimed to evaluate the effect of an integrated intrinsic foot muscle exercise program with a novel three-dimensional printing foot core training device on balance and body composition in community-dwelling adults aged 60 and above. METHODS: A total of 40 participants aged ≥ 60 years were enrolled in this quasi-experimental, single-group, pretest-posttest design; participants were categorized into two groups, those with balance impairment and those without balance impairment. The participants performed a 4-week integrated intrinsic foot muscle exercise program with a three-dimensional printing foot core training device. The short physical performance battery (SPPB) and timed up and go test were employed to evaluate mobility and balance. A foot pressure distribution analysis was conducted to assess static postural control. The appendicular skeletal muscle mass index and fat mass were measured by a segmental body composition monitor with bioelectrical impedance analysis. The Wilcoxon signed rank test was used to determine the difference before and after the exercise program. RESULTS: Among the 40 enrolled participants (median age, 78.0 years; female, 80.0%; balance-impaired group, 27.5%), the 95% confidence ellipse area of the center of pressure under the eyes-closed condition was significantly decreased (median pretest: 217.3, interquartile range: 238.4; median posttest: 131.7, interquartile range: 199.5; P = 0.001) after the exercise. Female participants without balance impairment demonstrated a significant increase in appendicular skeletal muscle mass index and a decrease in fat mass. Participants in the balance-impaired group exhibited a significant increase in SPPB. CONCLUSIONS: Integrated intrinsic foot muscle exercise with a three-dimensional printing foot core training device may improve balance and body composition in adults aged 60 and above. TRIAL REGISTRATION: ClinicalTrials.gov ID: NCT05750888 (retrospectively registered 02/03/2023).


Subject(s)
Body Composition , Foot , Independent Living , Muscle, Skeletal , Postural Balance , Humans , Female , Aged , Postural Balance/physiology , Male , Body Composition/physiology , Foot/physiology , Muscle, Skeletal/physiology , Middle Aged , Exercise Therapy/methods , Exercise Therapy/instrumentation , Aged, 80 and over
5.
Physiol Rep ; 12(9): e16045, 2024 May.
Article in English | MEDLINE | ID: mdl-38740565

ABSTRACT

The study explores the relationship between phase angle (PhA), an indicator of cellular health, and metabolic health parameters among junior sumo wrestlers in Japan. Given the demanding lifestyle and high-energy diets of sumo wrestlers that predispose them to metabolic syndrome post-retirement, this study focuses on a younger cohort. The primary aim is to evaluate if PhA could serve as an early indicator of metabolic health issues within this unique demographic. A total of 14 sumo wrestlers aged 9-17 years were assessed to determine the relationship between PhA and various metabolic markers, including glycated hemoglobin (HbA1c), using a TANITA MC-780A-N body composition analyzer and standard blood tests. Bivariate regression analysis and Pearson's correlation revealed a negative relationship between PhA and HbA1c even after adjusting for age and weight (ß = -0.496, r2 = 0.776, r = -0.756, p = 0.004). The results indicate a significant negative relationship between PhA and HbA1c levels, suggesting that lower PhA values, which indicate poorer cellular integrity, are associated with higher HbA1c levels, signifying impaired glycemic control. These findings underscore the potential of PhA as a valuable biomarker for monitoring metabolic health in young sumo wrestlers, with implications for early intervention and management strategies.


Subject(s)
Electric Impedance , Glycated Hemoglobin , Wrestling , Humans , Adolescent , Male , Wrestling/physiology , Glycated Hemoglobin/metabolism , Child , Pilot Projects , Biomarkers/blood , Body Composition/physiology
6.
Ecol Evol Physiol ; 97(1): 11-28, 2024.
Article in English | MEDLINE | ID: mdl-38717370

ABSTRACT

AbstractSeasonally breeding birds express variations of traits (phenotypic flexibility) throughout their life history stages that represent adaptations to environmental conditions. Changes of body condition during migration have been well studied, whereas alterations of skeletal and cardiac muscles, body mass, and fat scores have yet to be characterized throughout the spring or fall migratory stages. Additionally, we examined flexible patterns of muscle, body mass, and fat score in migrant white-crowned sparrows (Zonotrichia leucophrys gambelii) in comparison with those in a resident subspecies (Zonotrichia leucophrys nuttalli) during the stages they share to evaluate the influence of different life histories. Migrants showed hypertrophy of the pectoralis muscle fiber area on the wintering grounds in late prealternate molt, yet increased pectoralis muscle mass was not detected until birds readied for spring departure. While pectoralis profile and fat scores enlarged at predeparture in spring and fall, pectoralis, cardiac, and body masses were greater only in spring stages, suggesting seasonal differences for migratory preparation. Gastrocnemius mass showed little change throughout all stages, whereas gastrocnemius fiber area declined steadily but rebounded in fall on the wintering grounds, where migrants become more sedentary. In general, residents are heavier birds with larger leg structures, while migrants sport longer wings and greater heart mass. Phenotypic flexibility was most prominent among residents with peaks of pectoralis, gastrocnemius, and body masses during the winter stage, when local weather is most severe. Thus, the subspecies express specific patterns of phenotypic flexibility with peaks coinciding with the stages of heightened energy demands: the winter stage for residents and the spring stages for migrants.


Subject(s)
Animal Migration , Muscle, Skeletal , Phenotype , Seasons , Sparrows , Animals , Animal Migration/physiology , Muscle, Skeletal/physiology , Body Composition/physiology , Male , Pectoralis Muscles/physiology , Female
7.
Braz J Med Biol Res ; 57: e13282, 2024.
Article in English | MEDLINE | ID: mdl-38656072

ABSTRACT

Sarcopenia is a pathology resulting from a progressive and severe loss of muscle mass, strength, and function in the course of aging, which has deleterious consequences on quality of life. Among the most widespread studies on the issue are those focused on the effect of different types of physical exercise on patients with sarcopenia. This randomized controlled study aimed to compare the effects of a whole-body vibration exercise (WBV) session on the inflammatory parameters of non-sarcopenic (NSG, n=22) and sarcopenic elderly (SG, n=22). NSG and SG participants were randomly divided into two protocols: intervention (squat with WBV) and control (squat without WBV). After a one-week washout period, participants switched protocols, so that everyone performed both protocols. Body composition was assessed by dual-energy radiological absorptiometry (DXA) and function through the six-minute walk test (6MWD) and Short Physical Performance Battery (SPPB). Plasma soluble tumor necrosis factor receptors (sTNFR) were determined by enzyme-linked immunosorbent assay (ELISA) and measured before and immediately after each protocol. After exercise with WBV, there was an increase in sTNFR2 levels in the NSG (P<0.01; d=-0.69 (-1.30; -0.08) and SG (P<0.01, d=-0.95 (-1.57; -0.32) groups. In conclusion, an acute session of WBV influenced sTNFr2 levels, with sarcopenic individuals showing a greater effect. This suggested that WBV had a more pronounced impact on sTNFr2 in those with loss of muscle strength and/or physical performance. Additionally, WBV is gaining recognition as an efficient strategy for those with persistent health issues.


Subject(s)
Sarcopenia , Vibration , Humans , Sarcopenia/blood , Sarcopenia/therapy , Vibration/therapeutic use , Aged , Male , Female , Receptors, Tumor Necrosis Factor/blood , Enzyme-Linked Immunosorbent Assay , Body Composition/physiology , Muscle Strength/physiology , Absorptiometry, Photon , Exercise Therapy/methods , Treatment Outcome , Middle Aged , Aged, 80 and over , Quality of Life
8.
Hum Brain Mapp ; 45(6): e26685, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38647042

ABSTRACT

Ageing is a heterogeneous multisystem process involving different rates of decline in physiological integrity across biological systems. The current study dissects the unique and common variance across body and brain health indicators and parses inter-individual heterogeneity in the multisystem ageing process. Using machine-learning regression models on the UK Biobank data set (N = 32,593, age range 44.6-82.3, mean age 64.1 years), we first estimated tissue-specific brain age for white and gray matter based on diffusion and T1-weighted magnetic resonance imaging (MRI) data, respectively. Next, bodily health traits, including cardiometabolic, anthropometric, and body composition measures of adipose and muscle tissue from bioimpedance and body MRI, were combined to predict 'body age'. The results showed that the body age model demonstrated comparable age prediction accuracy to models trained solely on brain MRI data. The correlation between body age and brain age predictions was 0.62 for the T1 and 0.64 for the diffusion-based model, indicating a degree of unique variance in brain and bodily ageing processes. Bayesian multilevel modelling carried out to quantify the associations between health traits and predicted age discrepancies showed that higher systolic blood pressure and higher muscle-fat infiltration were related to older-appearing body age compared to brain age. Conversely, higher hand-grip strength and muscle volume were related to a younger-appearing body age. Our findings corroborate the common notion of a close connection between somatic and brain health. However, they also suggest that health traits may differentially influence age predictions beyond what is captured by the brain imaging data, potentially contributing to heterogeneous ageing rates across biological systems and individuals.


Subject(s)
Aging , Machine Learning , Magnetic Resonance Imaging , Humans , Middle Aged , Aged , Adult , Male , Aging/physiology , Female , Aged, 80 and over , Brain/diagnostic imaging , Brain/physiology , Body Composition/physiology , Gray Matter/diagnostic imaging , Gray Matter/anatomy & histology , White Matter/diagnostic imaging , White Matter/anatomy & histology , Bayes Theorem
9.
Int J Rehabil Res ; 47(2): 64-74, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38616768

ABSTRACT

Metabolic diseases disproportionately affect people with spinal cord injury (SCI). Increasing energy expenditure and remodeling body composition may offset deleterious consequences of SCI to improve cardiometabolic health. Evidence is emerging that robotic exoskeleton use increases physical activity in SCI, but little is known about its effects on energy expenditure and body composition. This study therefore aimed to evaluate the impact of robotic exoskeleton training on body composition and energy expenditure in adults with SCI. A systematic literature review was performed according to the Preferred Reporting Items for Systematic Review and Meta-Analysis guidelines. Five databases were searched to retrieve studies meeting pre-set eligibility criteria: adults with SCI, interventions evaluating the effects of robotic exoskeleton devices on body composition or energy expenditure. The PEDro scale guided quality assessments with findings described narratively. Of 2163 records, 10 studies were included. Robotic exoskeleton training does not significantly improve energy expenditure compared to other exercise interventions. Significant changes ( P  < 0.05) in body composition, particularly reduced fat mass, however, were reported. High variability seen with the interventions was coupled with poor quality of the studies. While robotic exoskeleton interventions may propose modest cardiometabolic benefits in adults with SCI, further robust trials in larger samples are needed to strengthen these findings.


Subject(s)
Body Composition , Energy Metabolism , Exoskeleton Device , Spinal Cord Injuries , Humans , Spinal Cord Injuries/rehabilitation , Energy Metabolism/physiology , Body Composition/physiology , Adult
10.
Sci Rep ; 14(1): 8113, 2024 04 06.
Article in English | MEDLINE | ID: mdl-38582755

ABSTRACT

Sleep duration has been associated with overweight/obesity. Since sleep quality and body composition alter during aging, we conducted this study to determine if sleep quality is linked to body composition components in elderly people. This is a cross-sectional study conducted on 305 Iranian community-dwelling elderly aged ≥ 65 years. Sleep quality and body composition components were evaluated using Pittsburgh sleep quality index and bioelectric impedance analysis, respectively. The association of sleep quality and body composition components was examined using linear regression analysis. The prevalence of poor sleep quality and overweight/obesity was 48.9% and 54.4% in men and 77.0% and 79.3% in women, respectively. Women had significantly higher scores in most PSQI items than men, indicating their worse sleep quality compared to men. Women also had significantly higher body mass index (BMI), body fat percentage, and visceral adipose tissue and lower skeletal muscle and fat-free mass percentages than men. In the adjusted regression model, men showed positive associations between the third tertile of poor sleep quality and BMI (B = 1.35; 95% CI 0.08-2.61) and waist circumference (B = 4.14; 95% CI 0.39-7.89), but they did not demonstrate an association between sleep quality and body composition components. In the adjusted regression model for women, there were positive associations for BMI (B = 1.21; 95% CI 0.34-2.07), waist circumference (B = 2.95; 95% CI 0.99-4.91), body fat percentage (B = 2.75; 95% CI 1.06-4.45), and visceral adipose tissue (B = 7.80; 95% CI 1.73-13.87); also there were negative associations for skeletal muscle (B = - 1.40; 95% CI - 2.39 - - 0.41) and fat-free mass (B = - 2.76; 95% CI - 4.46 - -1.07) percentages. Except for waist circumference, other variables differed between men and women (P < 0.001). Weight management, prevention of muscle wasting, and improvement of sleep quality should be considered in a consortium when designing healthcare strategies for the elderly.


Subject(s)
Overweight , Sleep Initiation and Maintenance Disorders , Male , Aged , Humans , Female , Overweight/epidemiology , Cross-Sectional Studies , Sleep Quality , Iran/epidemiology , Body Composition/physiology , Obesity/epidemiology , Body Mass Index , Waist Circumference
11.
J Strength Cond Res ; 38(5): 951-956, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38662887

ABSTRACT

ABSTRACT: González-Cano, H, Martín-Olmedo, JJ, Baz-Valle, E, Contreras, C, Schoenfeld, BJ, García-Ramos, A, Jiménez-Martínez, P, and Alix-Fages, C. Do muscle mass and body fat differ between elite and amateur natural physique athletes on competition day? A preliminary, cross-sectional, anthropometric study. J Strength Cond Res 38(5): 951-956, 2024-Natural physique athletes strive to achieve low body fat levels while promoting muscle mass hypertrophy for competition day. This study aimed to compare the anthropometric characteristics of natural amateur (AMA) and professional (PRO) World Natural Bodybuilding Federation (WNBF) competitors. Eleven male natural physique athletes (6 PRO and 5 AMA; age = 24.8 ± 2.3 years) underwent a comprehensive anthropometric evaluation following the International Society for the Advancement of Kinanthropometry protocol within a 24-hour time frame surrounding the competition. The 5-component fractionation method was used to obtain the body composition profile of the muscle, adipose, bone, skin, and residual tissues. Five physique athletes exceeded the 5.2 cutoff point of muscle-to-bone ratio (MBR) for natural athletes. Professional physique athletes were older than AMA physique athletes (p = 0.05), and they also presented larger thigh girths (p = 0.005) and bone mass (p = 0.019) compared with AMA physique athletes. Although no statistically significant between-group differences were observed in body mass, height, or body fat levels, PRO physique athletes exhibited a higher body mass index (BMI; AMA: 24.45 ± 0.12; PRO: 25.52 ± 1.01; p = 0.048), lean body mass (LBM; AMA: 64.49 ± 2.35; PRO: 69.80 ± 3.78; p = 0.024), fat-free mass (FFM; AMA: 71.23 ± 3.21; PRO: 76.52 ± 4.31; p = 0.05), LBM index (LBMI; AMA: 20.65 ± 0.52; PRO: 21.74 ± 0.85; p = 0.034), and fat-free mass index index (FFMI; AMA: 22.80 ± 0.22; PRO: 23.83 ± 0.90; p = 0.037) compared with AMA physique athletes. These findings highlight the unique characteristics and anthropometric differences between PRO and AMA natural physique athletes on competition day, emphasizing the significance of age, thigh girth, bone mass, BMI, LBM, FFM, and FFMI in distinguishing these 2 groups. Based on our findings, the established boundaries for muscle mass in natural physique athletes, based on FFMI and MBR, warrant reconsideration.


Subject(s)
Adipose Tissue , Anthropometry , Athletes , Body Composition , Muscle, Skeletal , Humans , Male , Cross-Sectional Studies , Young Adult , Adipose Tissue/anatomy & histology , Adipose Tissue/physiology , Muscle, Skeletal/physiology , Muscle, Skeletal/anatomy & histology , Adult , Body Composition/physiology , Weight Lifting/physiology
12.
Med Sci Monit ; 30: e943765, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38659197

ABSTRACT

BACKGROUND The human foot has a complex structure and the ligamentous and muscular apparatus undergoes transformation and adaptation during its ontogenetic development. Excessive body mass may be one of the factors disrupting proper foot formation. This study aimed to assess the foot structure in preschool children in relation to body mass. MATERIAL AND METHODS A total of 105 children aged 6.27±0.60 years were examined. Height, weight, and segmental body composition were determined using the Tanita MC-780 body composition analyzer. The foot structure was assessed using the Kasperczyk method, supplemented with digital analysis using the Podoscan 2D camera. The Weisflog index and gamma angle for feet were calculated. Children were divided into 2 groups: children in Group I did not have foot deformities and those in Group II had foot deformities. RESULTS No correlation was observed between body mass and the occurrence of anomalies in foot structure. A correlation was noted between the Weisflog index for the right foot and height in both groups. The Weisflog index for both feet was correlated with BMI, with higher values obtained for the left foot in both groups. In Group II, a correlation was observed between the gamma angle value for the left foot and the predicted muscle mass for the right lower limb, as well as between the same foot and the predicted muscle mass for the left lower limb. CONCLUSIONS No correlation was observed between high BMI and the occurrence of anomalies in foot structure. A relationship was identified between muscle mass and foot structure.


Subject(s)
Body Composition , Body Mass Index , Body Weight , Foot , Humans , Foot/anatomy & histology , Female , Male , Child, Preschool , Child , Body Composition/physiology , Body Weight/physiology , Foot Deformities/physiopathology , Body Height/physiology
13.
Physiol Rep ; 12(9): e16028, 2024 May.
Article in English | MEDLINE | ID: mdl-38684442

ABSTRACT

Maternal exercise (ME) has been established as a useful non-pharmacological intervention to improve infant metabolic health; however, mechanistic insight behind these adaptations remains mostly confined to animal models. Infant mesenchymal stem cells (MSCs) give rise to infant tissues (e.g., skeletal muscle), and remain involved in mature tissue maintenance. Importantly, these cells maintain metabolic characteristics of an offspring donor and provide a model for the investigation of mechanisms behind infant metabolic health improvements. We used undifferentiated MSC to investigate if ME affects infant MSC mitochondrial function and insulin action, and if these adaptations are associated with lower infant adiposity. We found that infants from exercising mothers have improvements in MSC insulin signaling related to higher MSC respiration and fat oxidation, and expression and activation of energy-sensing and redox-sensitive proteins. Further, we found that infants exposed to exercise in utero were leaner at 1 month of age, with a significant inverse correlation between infant MSC respiration and infant adiposity at 6 months of age. These data suggest that infants from exercising mothers are relatively leaner, and this is associated with higher infant MSC mitochondrial respiration, fat use, and insulin action.


Subject(s)
Body Composition , Exercise , Insulin , Mesenchymal Stem Cells , Mitochondria , Humans , Female , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/physiology , Exercise/physiology , Mitochondria/metabolism , Insulin/metabolism , Infant , Pregnancy , Male , Body Composition/physiology , Adult , Infant, Newborn , Adiposity/physiology
14.
J Strength Cond Res ; 38(5): 924-931, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38608041

ABSTRACT

ABSTRACT: Yao, X, Austerberry, A, Bishop, C, Wilson, L, Chiang, C-Y, and Turner, A. Seasonal variation and positional differences in anthropometry, strength, and power characteristics in English premiership women's rugby union players. J Strength Cond Res 38(5): 924-931, 2024-Women's rugby is a collision sport that relies heavily on body composition and physical characteristics of strength and power to achieve competitive success. Furthermore, the seasonal nature presents a variety of physical challenges that can cause fluctuations in a player's physical development. Therefore, the purpose of this study was to determine the differences in anthropometry, strength, and power characteristics between forwards and backs in women's rugby union athletes in England and to identify changes throughout a season. Forty-seven players were recruited from the English premiership women's rugby during the 2020-2021 season. Players were split into forwards and backs and underwent body composition testing by dual-energy X-ray absorptiometry and strength and power tests (countermovement jump, drop jump [DJ], and isometric midthigh pull) on 3 separate occasions (preseason, midseason, postseason). Overall, forwards had significantly ( p < 0.01) higher body mass, fat mass, lean mass [LM], bone mineral content, and take off momentum, and backs had significantly higher ( p < 0.01, d > 0.5) jump height, reactive strength, and shorter DJ contact time. When observing seasonal changes, there were statistically significant differences ( p < 0.01) or moderate-to-large practical differences ( d > 0.5) in LM, reactive strength index modified, time to take-off, and DJ flight time [FT] among forwards when comparing 3 testing time frames. For backs, statistically significant differences ( p < 0.01) or moderate-to-large practical differences ( d > 0.5) were reported in LM and DJ FT throughout the season. In conclusion, the strength and power testing and characteristics shown in this study could support coaches and junior women's rugby athletes to have a basic understanding of English premiership physical standards.


Subject(s)
Anthropometry , Body Composition , Muscle Strength , Seasons , Humans , Female , Muscle Strength/physiology , Young Adult , Body Composition/physiology , England , Adult , Football/physiology , Athletic Performance/physiology , Absorptiometry, Photon , Athletes , Rugby/physiology
15.
Sci Rep ; 14(1): 8842, 2024 04 17.
Article in English | MEDLINE | ID: mdl-38632317

ABSTRACT

Sarcopenia is a serious systemic disease that reduces overall survival. TAVI is selectively performed in patients with severe aortic stenosis who are not indicated for open cardiac surgery due to severe polymorbidity. Artificial intelligence-assisted body composition assessment from available CT scans appears to be a simple tool to stratify these patients into low and high risk based on future estimates of all-cause mortality. Within our study, the segmentation of preprocedural CT scans at the level of the lumbar third vertebra in patients undergoing TAVI was performed using a neural network (AutoMATiCA). The obtained parameters (area and density of skeletal muscles and intramuscular, visceral, and subcutaneous adipose tissue) were analyzed using Cox univariate and multivariable models for continuous and categorical variables to assess the relation of selected variables with all-cause mortality. 866 patients were included (median(interquartile range)): age 79.7 (74.9-83.3) years; BMI 28.9 (25.9-32.6) kg/m2. Survival analysis was performed on all automatically obtained parameters of muscle and fat density and area. Skeletal muscle index (SMI in cm2/m2), visceral (VAT in HU) and subcutaneous adipose tissue (SAT in HU) density predicted the all-cause mortality in patients after TAVI expressed as hazard ratio (HR) with 95% confidence interval (CI): SMI HR 0.986, 95% CI (0.975-0.996); VAT 1.015 (1.002-1.028) and SAT 1.014 (1.004-1.023), all p < 0.05. Automatic body composition assessment can estimate higher all-cause mortality risk in patients after TAVI, which may be useful in preoperative clinical reasoning and stratification of patients.


Subject(s)
Sarcopenia , Humans , Aged , Artificial Intelligence , Adipose Tissue , Muscle, Skeletal , Subcutaneous Fat , Body Composition/physiology , Retrospective Studies
16.
Commun Biol ; 7(1): 346, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38509307

ABSTRACT

The 5/6 nephrectomy and adenine-induced nephropathy mouse models have been extensively used to study Chronic Kidney Disease (CKD)-related cachexia. One common caveat of these CKD models is the cross-sectional nature of comparisons made versus controls. We here performed a comprehensive longitudinal assessment of body composition and energy metabolism in both models. The most striking finding is that weight loss is largely driven by reduced food intake which promotes rapid loss of lean and fat mass. However, in both models, mice catch up weight and lean mass a few days after the surgery or when they are switched back to standard chow diet. Muscle force and mass are fully recovered and no sign of cachexia is observed. Our data demonstrate that the time-course of kidney failure and weight loss are unrelated in these common CKD models. These data highlight the need to reconsider the relative contribution of direct and indirect mechanisms to muscle wasting observed in CKD.


Subject(s)
Cachexia , Renal Insufficiency, Chronic , Animals , Mice , Cachexia/complications , Cachexia/metabolism , Cross-Sectional Studies , Renal Insufficiency, Chronic/complications , Weight Loss , Body Composition/physiology
17.
PeerJ ; 12: e17140, 2024.
Article in English | MEDLINE | ID: mdl-38529312

ABSTRACT

Background: The study aim was to investigate the effect of high intensity circuit training on body composition, muscular performance, and blood parameters in sedentary workers. Methods: A total of 36 middle-aged sedentary female workers were randomly divided into high intensity circuit training (HICT) group, aerobic training (AT) group, and control (CON) group. The exercise training groups performed exercise three times per week for 8 weeks. In HICT, each session was 20-35 min with 2-3 rounds. Rounds were 8 min; the interval between rounds was 4-5 min. In AT, each exercise session comprised 20-35 min of aerobic dance training. Physiological parameters were measured 1 week before and after the interventions. The resulting data were analyzed using two-way mixed design ANOVA, the differences in body composition, muscular performance and blood parameters before and after training were compared. Results: The muscle mass (pre-test: 21.19 ± 2.47 kg; post-test: 21.69 ± 2.46 kg, p < 0.05) and knee extension 60°/s (pre-test: 82.10 ± 22.26 Nm/kg; post-test: 83.47 ± 12.83 Nm/kg, p < 0.05) of HICT group were significantly improved, with knee extension 60°/s significantly higher than that of the CON group (HICT: 83.47 ± 12.83 Nm/kg; CON: 71.09 ± 26.53 Nm/kg). In the AT group, body weight (BW) decreased significantly (Pre-test: 59.37 ± 8.24 kg; Post-test: 58.94 ± 7.98 kg); no significant change was observed in CON group. The groups exhibited no significant change in blood parameters (hs-CRP, TC, and LDL-C) or IGF-1. Conclusions: Sedentary worker's muscle mass and lower-limb muscular performance were effectively improved by performing 8-week HICT with the benefits of short duration, no spatial constraints, and using one's BW, whereas AT caused a significant decrease in BW. However, the AT induced decrease in BW was probably an effect of muscle loss rather than exercise-induced weight loss.


Subject(s)
Circuit-Based Exercise , Middle Aged , Humans , Female , Circuit-Based Exercise/methods , Muscle Strength/physiology , Exercise/physiology , Body Composition/physiology , Muscles
18.
Nutrients ; 16(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38542724

ABSTRACT

This study targeted elderly women over 60 years old (109 persons), divided them into an exercise group and a control group, and implemented a 12-week physical activity program for the exercise group. Body composition, muscle, blood tests, depression, quality of life (QoL), nutritional status, and physical strength were compared and analyzed. The physical activity program was organized through a consultative body of experts, was performed for about 60 min each time in the type and order of exercise appropriate for elderly women, and consisted of a combination of exercise using a band, gymnastics, and stretching. Changes in the muscle index and muscle mass before and after the program were selected as the primary efficacy evaluations. In the exercise group, waist circumference significantly decreased, and the muscle index significantly increased compared to the control group. The number of subjects who showed sarcopenia with a muscle index of 5.4 or less in the exercise group significantly decreased from 22 (38.6%) before program implementation to 13 (22.8%). According to the results of secondary effectiveness evaluation, high-density lipoprotein cholesterol and apolipoprotein (Apo) A were significantly increased in the exercise group compared to the control group, and Apo B, triglyceride, and c-reactive protein showed a significant decrease. Regular physical activity is very important for improving the health and QoL of elderly women, and as a result of applying a customized program, effects such as increased muscle index, improvement of sarcopenia, and improvement of blood lipid status were confirmed. Therefore, it is believed that the physical activity program developed through this study can be applied as a community program for elderly women.


Subject(s)
Sarcopenia , Humans , Female , Aged , Middle Aged , Sarcopenia/prevention & control , Sarcopenia/metabolism , Quality of Life , Muscle Strength/physiology , Exercise/physiology , Nutritional Status , Body Composition/physiology , Muscle, Skeletal/metabolism
19.
Nutrients ; 16(6)2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38542813

ABSTRACT

Diet and exercise intervention are the first strategies to counteract obesity. An online home-based exercise program may be a feasible approach in an obese population. Therefore, this study aimed to investigate the effects of twelve weeks of online Pilates plus diet on body composition in individuals affected by obesity. Thirty-five females were randomly assigned to a home-based Pilates group (PG, n = 18) or a group without intervention (control group, CG, n = 17). All participants followed a Mediterranean diet. The PG followed a twelve-week online Pilates Matwork program (three times/week; 180 min/week), while the CG was not involved in any structured physical exercise program. Body composition and handgrip strength were evaluated at baseline (T0) and after the intervention (T1). A significant group × time interaction (p < 0.05) was found for the fat mass percentage (pFM). Specifically, the pFM was significantly lower at T1 than at T0 in the PG. Significant group × time interactions for fat-free mass (p < 0.05), appendicular skeletal muscle mass (p < 0.05), and skeletal muscle mass (p < 0.01) were found. All these variables were significantly higher at T1 than at T0 in the PG (p < 0.05). Home-based Pilates combined with diet intervention may represent an effective strategy to improve body composition in terms of fat mass reduction and muscle mass gain in adults affected by obesity.


Subject(s)
Diet, Mediterranean , Hand Strength , Adult , Humans , Female , Obesity/therapy , Body Composition/physiology , Exercise/physiology
20.
BMC Public Health ; 24(1): 914, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38549103

ABSTRACT

BACKGROUND: Nutritional status is a modifiable factor associated with perimenopausal women's health and quality of life. Assessing body composition indicators helps to comprehensively understand nutritional status compared with using body mass index (BMI) only. However, few published studies measured the trends in body composition among perimenopausal women. OBJECTIVES: To assess the one-year trajectory of the nutritional status of perimenopausal women and to explore its influential factors. METHODS: A community-based observational study with 3-wave repeated measurements at 6-month intervals was carried out. The nutritional status indicators include weight, body mass index (BMI), and body composition variables. Bioelectrical impedance analysis was used to assess body composition. Repeated measures ANOVA and Chi-square test were used to calculate the changes in nutritional status and generalized estimating equations were performed to explore their influential factors. RESULTS: 2760 participants completed the study. Increasing trajectories in weight (from 56.05 ± 7.55 to 57.02 ± 7.60), fat mass (from 17.99 ± 4.80 to 20.49 ± 4.90), and waist-hip ratio (from 0.86 ± 0.04 to 0.91 ± 0.15) were found (P < 0.001). Decreasing trajectories in skeletal muscle (from 20.30 ± 2.38 to 19.19 ± 2.46), protein level (from 7.39 ± 0.79 to 7.06 ± 0.81), and total body water (from 27.87 ± 2.92 to 27.00 ± 3.01) were found (P < 0.001). Being married/unmarried with a partner and without negative life events were associated with higher total body water, skeletal muscle, and protein level, while negatively associated with fat mass and waist-hip ratio. Age was positively associated with fat mass (P < 0.001). Participants with junior high school education were prone to increased fat mass (P = 0.018) compared with those holding primary school education and below. A per capita monthly income of 1500 to 3000 Yuan was associated with higher total body water, skeletal muscle, and protein level (P < 0.001) compared with a per capita monthly income of less than 1500 Yuan. CONCLUSION: Worsening nutritional status exists in perimenopausal women, which is characterized by increased weight, fat mass, and waist-hip ratio, and decreased skeletal muscle, total body water, and protein level. For greater efficiency, precision nutritional interventions are needed, and recipients should be classified into different risk levels based on their sociodemographic background.


Subject(s)
Nutritional Status , Perimenopause , Humans , Female , Prospective Studies , Quality of Life , Body Mass Index , Body Composition/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...